- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Jensen, K. A. & Henriksen, L. (1970). Acta Chem. Scand. 24, 3213-3229.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kaiser, J., Dietzsch, W., Richter, R., Golič, L. & Šiftar, J. (1980). Acta Cryst. B36, 147–150.
- Keller, E. (1988). SCHAKAL88. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Albert-Ludwigs-Univ., Freiburg, Germany.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELXS80. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1309-1311

## Structure of Bis- $\mu$ -[(trimethylsilylmethanolato-O)-bis(trimethylsilylmethyl)gallium] and Bis- $\mu$ -[(trimethylsilylmethanolato-O)-bis(trimethylsilylmethyl)indium]

UDO DEMBOWSKI, THOMAS PAPE, REGINE HERBST-IRMER, EHMKE POHL, HERBERT W. ROESKY AND GEORGE M. SHELDRICK

Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 3400 Göttingen, Germany

(Received 11 August 1992; accepted 22 December 1992)

## Abstract

Two new compounds, (I) bis- $\mu$ -(trimethylsilylmethanolato-O)-bis[bis(trimethylsilylmethyl)gallium] and (II) bis- $\mu$ -(trimethylsilylmethanolato-O)-bis[bis(trimethylsilylmethyl)indium], have been obtained with dimeric structures, with planar four-membered Ga<sub>2</sub>O<sub>2</sub> and In<sub>2</sub>O<sub>2</sub> rings, respectively.

### Comment

The asymmetric unit of (I) consists of two independent molecules each with an inversion centre in the middle of the four-membered ring. As these two molecules are almost identical, only one is shown in Fig. 1 (weighted r.m.s deviation 0.17 Å). Owing to the inversion centre the four-membered ring is exactly planar. On average, the endocyclic angles are O—Ga—O 81.6 (1) and Ga—O—Ga 98.4 (1)°. The exocyclic angles are increased by the steric demand of the bulky  $CH_2Si(CH_3)_3$  groups  $[C-Ga-C 126.8 (2)^\circ]$ . The observed average bond lengths Ga-O 1.967 (4) and Ga-C 1.966 (4) Å agree well with values found in the analogous compound  $[(C_5H_5)_2GaOEt]_2$  (Cowley, Mehrota, Atwood & Hunter, 1985).

In contrast to (I), compound (II) does not possess any crystallographic symmetry. The four-membered  $In_2O_2$  ring is almost planar (mean deviation from least-squares plane 0.06 Å). The mean endocyclic angles are O—In—O 79.3 (1) and In—O—In 100.3 (1)°. As in (I), the exocyclic angles on the In atoms are increased by the steric demand of the  $CH_2Si(CH_3)_3$  groups. The different arrangement of the  $CH_2Si(CH_3)_3$  groups [C5—In1—C6 130.9 (1) and C3—In2—C4 144.2 (1)°]. As in (I), no unusual bond lengths were found. The mean bond lengths In—O 2.173 (2) and In—C 2.152 (4) Å are in good agreement with values found in [('Bu)InOEt]<sub>2</sub> (Bradley, Frigo, Hursthouse & Hussain, 1988).



Fig. 1. Structure of one molecule of (1) showing 50% probability displacement ellipsoids. The H atoms are omitted for clarity.



Fig. 2. Structure of (II) showing 50% probability displacement ellipsoids. The H atoms are omitted for clarity.

#### Experimental

Compound (I) Crystal data  $[Ga_2(C_4H_{11}OSi)_2(C_4H_{11}Si)_4]$  $M_r = 694.75$ 

 $D_x = 1.131 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation

Acta Crystallographica Section C ISSN 0108-2701 ©1993

#### 1310

## **REGULAR STRUCTURAL PAPERS**

| Trialinia                       | $\lambda = 0.71073$ Å                  | C41 | 0.6441.(5)   | 0.6380 (4)   | 0.4999 (4)  | 0.059 (4)  |
|---------------------------------|----------------------------------------|-----|--------------|--------------|-------------|------------|
| Themne                          | $\chi = 0.71073 \text{ A}$             | C42 | 0.6716 (4)   | 0.4157 (4)   | 0.3678 (4)  | 0.048 (3)  |
| <i>P</i> 1                      | Cell parameters from 57                | C43 | 0.5798 (4)   | 0.5952 (4)   | 0.2695 (4)  | 0.060 (3)  |
| a = 12.240 (2) Å                | reflections                            | C5  | 1.0498 (4)   | 0,7346 (3)   | 0.5925 (3)  | 0.034 (2)  |
| b = 12.642 (2) Å                | $\theta = 10 - 12.5^{\circ}$           | Si5 | 0.98585 (10) | 0.86112 (10) | 0.64570 (9) | 0.0339 (7) |
| a = 14.039(2) Å                 | $\mu = 1.514 \text{ mm}^{-1}$          | C51 | 0.9066 (4)   | 0.8380 (4)   | 0.7379 (4)  | 0.051 (3)  |
| C = 14.039(2)  A                | $\mu$ 1.514 IIII<br>T = 152.0 (10) V   | C52 | 1.1003 (5)   | 0.9717 (4)   | 0.7160 (4)  | 0.057 (3)  |
| $\alpha = 103.860 (10)^{\circ}$ | I = 155.0 (10) K                       | C53 | 0.8883 (4)   | 0.9111 (4)   | 0.5429 (4)  | 0.051 (3)  |
| $\beta = 104.160 (10)^{\circ}$  | $0.3 \times 0.3 \times 0.1 \text{ mm}$ | C6  | 0.9451 (4)   | 0.5267 (4)   | 0.6700 (3)  | 0.039 (3)  |
| $\gamma = 90.620 (10)^{\circ}$  | Colourless                             | Si6 | 0.87380 (12) | 0.42726 (11) | 0.71961 (9) | 0.0391 (8) |
| $V = 2030.5 (5) Å^3$            | Crystal source: Dembowski              | C61 | 0.7190 (4)   | 0.4252 (5)   | 0.6710 (4)  | 0.056 (3)  |
| V = 2039.3 (3)  A               | (1001)                                 | C62 | 0.9169 (5)   | 0.4827 (4)   | 0.8608 (3)  | 0.051 (4)  |
| L = 2                           | (1771)                                 | C63 | 0.9197 (5)   | 0.2868 (4)   | 0.6855 (4)  | 0.050 (4)  |

### Data collection

|                                          |                            |                         | -           |                          |             |
|------------------------------------------|----------------------------|-------------------------|-------------|--------------------------|-------------|
| Stoe-Siemens AED four-                   | 5248 observed reflections  | Ga1—O1                  | 1.953 (3)   | Ga2—C4                   | 1.959 (4)   |
| oircle diffractometer                    | $[I > 2\sigma(I)]$         | Ga1-C1                  | 1.968 (4)   | Ga2—O2                   | 1.964 (3)   |
|                                          | [1 > 20(1)]                | Gal-C2                  | 1 970 (4)   | Ga2_C5                   | 1 967 (4)   |
| Profile data from $2\theta/\omega$ scans | $R_{\rm int} = 0.1159$     |                         | 1.075 (2)   |                          | 1.076 (2)   |
| Abaamtian competions                     | $A^{-} = 24.00^{\circ}$    | Gal-OI                  | 1.975 (3)   | Ga2-02-                  | 1.970(3)    |
| Absorption correction:                   | $\sigma_{\rm max} = 24.99$ | 01-Ga1-C1               | 108.5 (2)   | C4—Ga2—O2                | 113.5 (2)   |
| Empirical                                | $h = -14 \rightarrow 14$   | O1Ga1C2                 | 113.3 (2)   | C4—Ga2—C5                | 126.5 (2)   |
| $T_{\min} = 0.800, T_{\max} =$           | $k = -15 \rightarrow 14$   | C1-Ga1-C2               | 127.2 (2)   | O2-Ga2-C5                | 108.8 (2)   |
| 0.926                                    | $l = -15 \rightarrow 16$   | O1—Ga1—O1 <sup>i</sup>  | 81.60 (12)  | C4—Ga2—O2 <sup>ii</sup>  | 108.7 (2)   |
| 7716 macrossed softensions               | 3 standard reflections     | C1—Ga1—O1 <sup>i</sup>  | 107.76 (15) | O2—Ga2—O2 <sup>ii</sup>  | 81.53 (12)  |
| //10 measured reflections                | 5 Standard Tenections      | C2Ga1O1 <sup>i</sup>    | 108.94 (15) | C5—Ga2—O2 <sup>ii</sup>  | 108.66 (15) |
| 7139 independent reflections             | frequency: 90 min          | C3-01-Ga1               | 119.0 (2)   | C6—O2—Ga2                | 118.6 (2)   |
|                                          | intensity variation: none  | C3O1Ga1 <sup>i</sup>    | 122.7 (2)   | C6—O2—Ga2 <sup>ii</sup>  | 122.2 (3)   |
|                                          | -                          | Ga1—O1—Ga1 <sup>i</sup> | 98.40 (12)  | Ga2—O2—Ga2 <sup>ii</sup> | 98.47 (12)  |

#### Refinement

| Refinement on $F^2$                      | Calculated weights                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Final $R = 0.0441$ ( $R =$               | $w = 1/[\sigma^2(F_o^2) + (0.0258P)^2]$                                   | Compound (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0744 for all data)                     | + 3.2018 <i>P</i> ]                                                       | Crystal data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| wR = 0.0822 ( $wR = 0.1015for all data)$ | where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{\text{max}} = -0.001$ | $[In_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_{2}(C_{4}H_{11}OSi)_$ |
| S = 1.054                                | $\Delta \rho_{\rm max}$ = 0.789 e Å <sup>-3</sup>                         | Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7139 reflections                         | $\Delta  ho_{\rm min}$ = -0.526 e Å <sup>-3</sup>                         | $P\overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 327 parameters                           | Atomic scattering factors                                                 | <i>a</i> = 9.887 (4) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Riding-model refinement of               | from International Tables                                                 | b = 11.879 (4) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| H-atom parameters                        | for Crystallography (1992,                                                | c = 17.586 (6) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                          | Vol. C, Tables 4.2.6.8 and                                                | $\alpha = 104.40 (2)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          | 6.1.1.4)                                                                  | $\beta = 03.43.(3)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (I)

$$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|            | x            | у             | z             | $U_{eq}$   |
|------------|--------------|---------------|---------------|------------|
| Gal        | 0.55260 (4)  | -0.01132 (4)  | -0.08650 (3)  | 0.0268 (3) |
| 01         | 0.4662 (2)   | 0.0924 (2)    | -0.0132 (2)   | 0.028 (2)  |
| C1         | 0.4528 (4)   | -0.0866 (4)   | -0.2190 (3)   | 0.033 (3)  |
| Si1        | 0.46176 (11) | -0.04948 (10) | -0.33735 (8)  | 0.0327 (7) |
| C11        | 0.3714 (5)   | -0.1491 (4)   | -0.4512 (3)   | 0.054 (4)  |
| C12        | 0.4135 (4)   | 0.0900 (4)    | -0.3386(3)    | 0.045 (3)  |
| C13        | 0.6116 (4)   | -0.0509 (5)   | -0.3475 (4)   | 0.051 (3)  |
| C2         | 0.7131 (4)   | 0.0386 (4)    | -0.0574 (3)   | 0.036(2)   |
| Si2        | 0.76133 (11) | 0.18503 (11)  | -0.02706 (10) | 0.0389 (7) |
| C21        | 0.7534 (5)   | 0.2542 (5)    | 0.1038 (4)    | 0.059 (4)  |
| C22        | 0.6731 (5)   | 0.2560 (4)    | -0.1185 (4)   | 0.054 (3)  |
| C23        | 0.9113 (4)   | 0.1972 (5)    | -0.0348 (5)   | 0.065 (3)  |
| C3         | 0.3730 (4)   | 0.1403 (4)    | -0.0705 (3)   | 0.034 (3)  |
| Si3        | 0.32912 (12) | 0.27141 (11)  | 0.00053 (10)  | 0.0382 (8) |
| C31        | 0.4470 (5)   | 0.3776 (5)    | 0.0384 (5)    | 0.076 (4)  |
| C32        | 0.2842 (6)   | 0.2564 (5)    | 0.1146 (4)    | 0.071 (6)  |
| C33        | 0.2085 (5)   | 0.3096 (5)    | -0.0910 (4)   | 0.062 (4)  |
| Ga2        | 0.95791 (4)  | 0.60893 (4)   | 0.49298 (3)   | 0.0300 (3) |
| 02         | 0.9399 (2)   | 0.4946 (2)    | 0.5623 (2)    | 0.032 (2)  |
| C <b>4</b> | 0.8262 (4)   | 0.6148 (4)    | 0.3827 (3)    | 0.038 (3)  |
| Si4        | 0.68226 (10) | 0.56556 (10)  | 0.38148 (9)   | 0.0348 (7) |

| $[In_2(C_4H_{11}OSi)_2(C_4H_{11}Si)_4]$ | $D_x = 1.265 \text{ Mg m}^{-3}$ |
|-----------------------------------------|---------------------------------|
| $M_r = 756.90$                          | Mo $K\alpha$ radiation          |
| Triclinic                               | λ = 0.71073 Å                   |
| $P\overline{1}$                         | Cell parameters from            |
| a = 9.887 (4) Å                         | reflections                     |
| b = 11.879 (4) Å                        | $\theta = 10 - 12.5^{\circ}$    |
| c = 17.586 (6) Å                        | $\mu = 1.356 \text{ mm}^{-1}$   |
| $\alpha = 104.40 (2)^{\circ}$           | T = 153.0 (10)  K               |
| $\beta = 93.43 (3)^{\circ}$             | $0.4 \times 0.3 \times 0.3$ mm  |
| $\gamma = 94.66 (2)^{\circ}$            | Colourless                      |
| V = 1987.1 (12) Å <sup>3</sup>          | Crystal source: Pape            |
| Z = 2                                   |                                 |

Table 2. Geometric parameters (Å, °) for (I)

Symmetry code: (i) 1 - x, -y, -z; (ii) 2 - x, 1 - y, 1 - z.

## Data collection

| Stoe-Siemens AED four-                   | 5071 obs                |
|------------------------------------------|-------------------------|
| circle diffractometer                    | [I>2c]                  |
| Profile data from $2\theta/\omega$ scans | $R_{\rm int} = 0.0$     |
| Absorption correction:                   | $\theta_{\rm max} = 24$ |
| Empirical                                | h = -11                 |
| $T_{\min} = 0.761, T_{\max} =$           | k = -13                 |
| 0.938                                    | l = -5                  |
| 6013 measured reflections                | 3 standar               |
| 5968 independent reflections             | freque                  |
| •                                        | intensi                 |
|                                          |                         |
| Refinement                               |                         |
|                                          |                         |

# Refinement on $F^2$

Final R = 0.0260 (R =0.0356 for all data) wR = 0.0543 (wR = 0.0627)for all data)

arameters from 51 ctions - 12.5°  $356 \text{ mm}^{-1}$ 53.0 (10) K  $0.3 \times 0.3 \text{ mm}$ less source: Pape (1990)

served reflections 7(I)] 0209 4.01°  $\rightarrow 11$  $\rightarrow 13$ **→** 20 rd reflections ency: 90 min ity variation: none

Calculated weights  $w = 1/[\sigma^2(F_o^2) + (0.0231P)^2]$ + 1.4675P] where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} = 0.001$ 

| S = 1.049               |    |
|-------------------------|----|
| 5964 reflections        |    |
| 310 parameters          |    |
| Riding-model refinement | of |
| H-atom parameters       |    |

 $\Delta \rho_{\text{max}} = 0.426 \text{ e } \text{\AA}^{-3}$   $\Delta \rho_{\text{min}} = -0.358 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

For both compounds: Data collection: Stoe *DIF*4, version 7.08. Cell refinement: Stoe *DIF*4, version 7.08. Data reduction: Stoe *REDU*4. Program(s) used to solve structure: *SHELXS*92 (Sheldrick, 1990*a*). Program(s) used to refine structure: *SHELXL*92 (Sheldrick, 1992). Molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990*b*). Software used to prepare material for publication: *SHELXL*92.

| Table 3. | Fractional of | atomic | coordinates  | and  | equivalent |
|----------|---------------|--------|--------------|------|------------|
| isotı    | ropic displac | ement  | parameters ( | Ų) f | or (II)    |

$$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|      | x            | v            | z             | $U_{ed}$     |
|------|--------------|--------------|---------------|--------------|
| In 1 | 0.27762 (2)  | 0.59884 (2)  | 0.316886 (12) | 0.02375 (14  |
| In2  | 0.22009 (2)  | 0.76616 (2)  | 0.193749 (13) | 0.02486 (14) |
| 01   | 0.3550 (2)   | 0.7631 (2)   | 0.29591 (12)  | 0.0251 (12)  |
| 02   | 0.1282 (2)   | 0.6125 (2)   | 0.22508 (12)  | 0.0247 (12)  |
| Si1  | 0.49915 (9)  | 0.84184 (8)  | 0.33258 (5)   | 0.0280 (5)   |
| Si2  | 0.01570 (9)  | 0.50427 (8)  | 0.17776 (5)   | 0.0277 (5)   |
| Si3  | 0.41147 (11) | 0.77613 (10) | 0.03269 (6)   | 0.0376 (6)   |
| Si4  | 0.01058 (11) | 0.98014 (8)  | 0.17185 (6)   | 0.0343 (6)   |
| Si5  | 0.48484 (10) | 0.38086 (8)  | 0.31469 (6)   | 0.0333 (6)   |
| Si6  | 0.08412 (11) | 0.73994 (10) | 0.46630 (6)   | 0.0385 (6)   |
| C11  | 0.6383 (4)   | 0.7862 (4)   | 0.2709 (2)    | 0.049 (2)    |
| C12  | 0.5421 (4)   | 0.8283 (3)   | 0.4343 (2)    | 0.040 (2)    |
| C13  | 0.4805 (4)   | 0.9974 (3)   | 0.3342 (2)    | 0.048 (3)    |
| C21  | 0.0808 (4)   | 0.4179 (3)   | 0.0865 (2)    | 0.047 (2)    |
| C22  | -0.1428 (4)  | 0.5631 (4)   | 0.1502 (3)    | 0.053 (2)    |
| C23  | -0.0204 (5)  | 0.4072 (4)   | 0.2446 (2)    | 0.053 (3)    |
| C3   | 0.3310 (4)   | 0.6897 (3)   | 0.0952 (2)    | 0.040 (2)    |
| C31  | 0.5375 (5)   | 0.6909 (5)   | -0.0264 (3)   | 0.075 (3)    |
| C32  | 0.5015 (5)   | 0.9180 (4)   | 0.0928 (3)    | 0.061 (3)    |
| C33  | 0.2777 (4)   | 0.8084 (4)   | -0.0360 (2)   | 0.049 (3)    |
| C4   | 0.0925 (4)   | 0.9017 (3)   | 0.2383 (2)    | 0.039 (2)    |
| C41  | -0.0773 (5)  | 0.8743 (4)   | 0.0828 (2)    | 0.065 (3)    |
| C42  | 0.1410 (5)   | 1.0794 (4)   | 0.1422 (3)    | 0.067 (4)    |
| C43  | -0.1194 (4)  | 1.0692 (3)   | 0.2233 (2)    | 0.052 (3)    |
| C5   | 0.3986 (4)   | 0.4670 (3)   | 0.2558 (2)    | 0.035 (2)    |
| C51  | 0.6119 (5)   | 0.4798 (4)   | 0.3885 (3)    | 0.075 (4)    |
| C52  | 0.5745 (5)   | 0.2656 (4)   | 0.2496 (3)    | 0.059 (3)    |
| C53  | 0.3590 (5)   | 0.3096 (4)   | 0.3674 (3)    | 0.062 (3)    |
| C6   | 0.2016 (4)   | 0.6270 (3)   | 0.4313 (2)    | 0.038 (2)    |
| C61  | 0.0257 (6)   | 0.7249 (5)   | 0.5625 (3)    | 0.085 (4)    |
| C62  | 0.1707 (5)   | 0.8892 (4)   | 0.4792 (3)    | 0.072 (3)    |
| C63  | -0.0680 (4)  | 0.7225 (4)   | 0.3958 (3)    | 0.064 (3)    |

## Table 4. Geometric parameters (Å, °) for (II)

|                                 |             |            | 2 140 (4)   |
|---------------------------------|-------------|------------|-------------|
| In1-C6                          | 2.147 (4)   | In2        | 2.149 (4)   |
| In1-C5                          | 2.158 (4)   | In2-C3     | 2.154 (4)   |
| In1-01                          | 2.163 (2)   | In2—O2     | 2.180 (3)   |
| In1-O2                          | 2.168 (2)   | In2—O1     | 2.182 (2)   |
| C6-In1-C5                       | 130.87 (13) | C4-In2-01  | 104.21 (11) |
| C6-In1-O1                       | 110.42 (12) | C3-In2-O1  | 103.61 (13) |
| C5-In1-O1                       | 107.23 (12) | 02-In2-01  | 78.93 (8)   |
| C6—In1—O2                       | 113.73 (12) | Sil-Ol-Inl | 127.65 (12) |
| C5—In1—O2                       | 103.02 (11) | Si1-O1-In2 | 130.18 (12) |
| 01-In1-02                       | 79.62 (8)   | In1-01-In2 | 100.37 (9)  |
| C4-In2-C3                       | 144.17 (14) | Si2-O2-In1 | 123.63 (12) |
| C4—In2—O2                       | 104.96 (12) | Si2-O2-In2 | 132.62 (12) |
| $C_{3} = I_{n}^{2} = O_{2}^{2}$ | 102.17 (12) | In1        | 100.29 (9)  |

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved This work was supported by the Deutsche Forschungsgemeinschaft. EP is grateful to the Stiftung Stipendienfonds des Verbands der chemischen Industrie for a fellowship.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55973 (44 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HL1019]

#### References

Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112-1115.

Cowley, A. H., Mehrota, S. K., Atwood, J. L. & Hunter, W. E. (1985). Organometallics, 4, 1115-1118.

Dembowski, U. (1991). PhD thesis. Univ of Göttingen, Germany.

Pape, T. (1990). Diplomarbeit. Univ. of Göttingen, Germany.

Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1990b). SHELXTL-Plus. Version 4.3. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1992). SHELXL92. Program for crystal structure refinement. Univ. of Göttingen, Germany.

## Acta Cryst. (1993). C49, 1311-1315

# Cu<sup>II</sup> and Pd<sup>II</sup> Complexes of 3-Hydroxy-1,3-bis(2-thienyl)prop-2-en-1-one

Lesley A. M. Baxter, Alexander J. Blake,\* Robert O. Gould, Graham A. Heath and T. Anthony Stephenson

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 10 March 1992; accepted 1 December 1992)

#### Abstract

The 1:2 complexes formed between Cu<sup>II</sup> or Pd<sup>II</sup> and the anion of 3-hydroxy-1,3-bis(2-thienyl)prop-2-en-1one [*L*H: Baxter, Blake, Heath & Stephenson (1990). *Acta Cryst.* C46, 508–510], bis[(3-hydroxy- $\kappa O'$ )-1,3bis(2-thienyl)prop-2-en-1-onato(1 – )- $\kappa O$ ]copper(II) and bis[(3-hydroxy- $\kappa O'$ )-1,3-bis(2-thienyl)prop-2-en-1-onato(1 – )- $\kappa O$ ]palladium(II), crystallize with the metal ions occupying crystallographic inversion centres and coordinated by approximately square planes of four O atoms. The similarities within the pairs of *M*—O, C—C and C—O bonds in the chelate rings indicate the latter are behaving as delocalized systems. The mean Cu—O and Pd—O distances are